Stream restoration effects on exchange, storage and baseflow generation

Ninemile Creek, Montana

Christine Brissette
Jencso Watershed Hydrology Lab
W.A. Franke College of Forestry and Conservation
How much water is being stored or drained?
Net Change in Discharge

Net $\Delta Q = Q_{\text{downstream}} - Q_{\text{Upstream}}$

Q_{Upstream}
100 liters/sec

$Q_{\text{downstream}}$
120 liters/sec

Net Gain
+20 liters/sec
Net change in Discharge

Valley normalized Net change in Q

(m3 day$^{-1}$ m$^{-1}$ valley)

Jul Aug Sep Oct Nov

Restored
Degraded
How much *groundwater* is entering the stream?
Radon-222 modeling

\[
Q \frac{dc}{dx} = I(c_i - \bar{c}) + wE\bar{c} - kw\bar{c} - dw\lambda\bar{c} + \frac{\gamma hw\theta}{1 + \lambda t_h} - \frac{\lambda hw\theta}{1 + \lambda t_h} \bar{c}
\]

Cook et al. 2006
Summary

- Increased underflow/storage
- Longer duration of storage period
- More gradual decline in GW discharge to stream
- Higher volumetric gains/groundwater discharge at baseflow