Identifying Creative Ways to Overcome Constraints to Ecological Restoration

hoto credit: Jeff Mittor

Akasha M. Faist

Assistant Professor of Rangeland Restoration Ecology University of Montana - W.A. Franke College of Forestry and Conservation Department of Ecosystem and Conservation Sciences akasha.faist@umontana.edu What do we as a research group spend -*a fair amount of*- our time thinking about in ecological restoration?

Identify novel and creative <u>actions</u> to overcome barriers to ecological restoration success

Ecological Restoration

Actions taken

Restoration Ecology

The actions we take can help determine the outcome of the restoration project

What actions to take?

Modified from Bowker 2007

000

Photo credit: Ellie McCann

Seed based restoration

US BLM spends ~\$50 million USD annually on purchasing and implementing seeding alone (Kildsheva et al. 2016)

Western US seeding efforts <10% successful (James and Carrick 2016, James et al. 2019)

Ecologically difficult to achieve success in dryland seeding efforts (Madsen et al. 2016, Shackelford et al. 2021)

Are they already there?

Photo credit: Ellie McCann

Soil seed banks

A B

2,000-year-old palms germinated from an extinct species!

32,000-year-old seeds found in squirrel cache in permafrost!

Super Blooms!

Soil seed banks in restoration

- Insight into both the *history* and the potential *future* of a system
- Commonly show higher diversity than associated aboveground vegetation (Vandvik et al. 2016)
- Knowing what is in the seed bank can inform seed-based restoration efforts

How many seeds are we talking about?

California vernal pools average of 21,700 seeds/m²

Faist et al. 2013; Faist and Collinge 2015

How many seeds are we talking about?

Seed banks and restoration

Seed bank composition

 Similarity to above ground vegetation can guide efforts

<u>Minimize duplication of efforts</u>

- e.g., some species are everywhere...
- Use species that are not already in the seed bank!
- Maximize competitive advantages
 - Add species best able to compete with invasives present (e.g., Uselman et al. 2015)

Photo credit: Ryan Schroeder

Do we need to add them?

00

Photo credit: Ellie McCann

Native plant seeding

Creative seed mixes

Application techniques

Coupled with habitat modifications

Biotic Interactions

Environment

Percent germination and biomass by nutrient additions

Native plant seeding

Creative seed mixes

Application techniques

Coupled with habitat modifications

What actions to take?

Modified from Bowker 2007

Biological soil crust

Biocrust communities:

Belnap et al. 2001

Weber et al. 2022

Reduce sediment loss and runoff (Faist et al. 2017, Bao et al. 2019)

Increase water retention

(Chamizo et al. 2016, Eldridge et al. 2020)

Decrease dust emissions

(Belnap and Budel 2016)

Enhance soil nutrients

(Belnap et al. 2003, Delgado-Baquerizo et al. 2013, Ferrenberg et al. 2018, Nevins et al. 2020)

British Columbia

Photos from UNBC plant ecology website: http://www.unbcplantecology.ca/index.ph p/research/biological-soil-crusts/

Here in western Montana!

Bowker et al. 2022

Great Plains

Warren et al. 2021

Young et al. 2020

Photo credit: Bill Bowman

Biological soil crust restoration

Inoculum (propagules)

Photo Credit: A. Antoninka

Photo Credit: A. Antoninka

Photo Credit: A. Giraldo-Silva

- Field implementation
- Habitat preparation and modification
 - Surface Roughening
 - **Shading**
 - Irrigation and water addition

Assessment

Plant-biological soil crust relationships

Photo credit: Ellie McCann

Ferrenberg et al. 2018

Biocrust and Nutrient study

 Biocrust
 p = 0.00071

 Nutrients
 p < 0.0001</td>

Plant-Biocrust Synthesis

PLANT RESPONSE TO BIOCRUST

EXPLANATORY VARIABLES		Germination	Survival	Growth	Cover	Overall Performance
BIOCRUST TYPE	Cyanobacteria					
	Lichen					
	Moss					
	Mixed					
PLANT FUNCT. GROUP	C3 Grass					
	C4 Grass					
	Non-N-fix Forb					
	N-fix Forb					
	Non N-fix Woody					
	N-fix Woody					
	Community					
PLANT NATIVE.	Native					
	Non-Native					
PLANT REF. STATE	Bare Soil					
	Biocrust removal					
	Biocrust disturb.				100	
	Filter paper					

Havrilla et al. 2019

Continue to - Identify novel and creative <u>actions</u> to overcome barriers to ecological restoration success

In your opinion what do you think of these five options is the biggest challenge restoration practitioners/ecologists face?

a) Climate change

- b) Ecology is complicated
- c) Public perception of restoration working perfectly
- d) Differences of opinion of desired outcomes
- e) Not enough resources

UNIVERSITY OF MONTANA

NM State

United States Department of Agriculture Natural Resources Conservation Service

