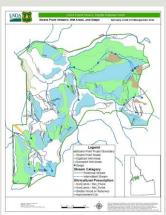
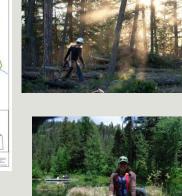
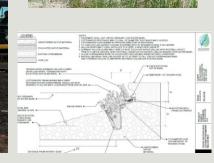
Floating Treatment Wetlands for Stormwater & Wastewater Treatment

CATHERINE WIECHMANN
WATERSHED CONSULTING LLC.

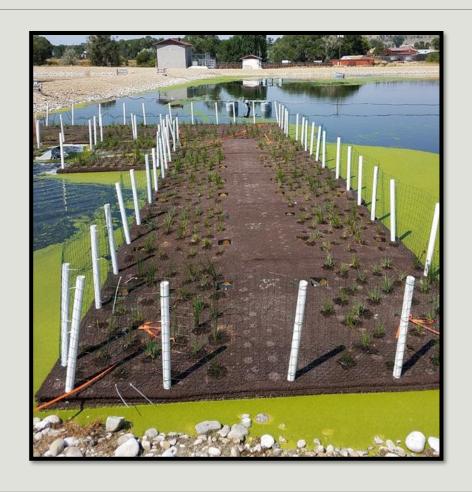



Watershed Consulting LLC.



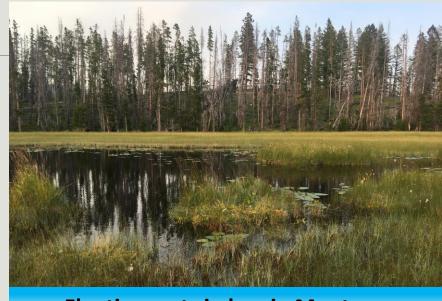
We are a natural resource consulting firm in Missoula, MT that provides comprehensive ecological assessment and restoration services in the Northern Plains and Rocky Mountains. We offer a range of services in:

- Ecological Assessment & Design
- Restoration Design & Implementation
- Wetland Assessment & Permitting/Delineation
- •Alternative Wastewater/Stormwater Treatments
- •Monitoring and Data Collection
- •Forestry Services
- •Mapping & Aerial Imagery





Manmade island ecosystems that mimic natural wetlands to create a "Concentrated Wetland Effect"

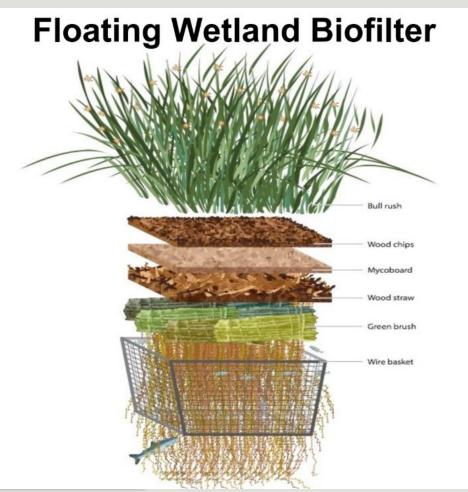

Reference Floating Wetlands

Evans Creek Natural Area, Redmond WA


Floating peat mats in NH

Floating mats in bog in Montana

Manmade island ecosystems that mimic natural wetlands to create a "Concentrated Wetland Effect"


Manmade island ecosystems that mimic natural wetlands to create a "Concentrated Wetland Effect"

Biohaven Matrix is manufactured with 100% recycled polyethylene terephthalate (PET) sourced from plastic drinking bottles.

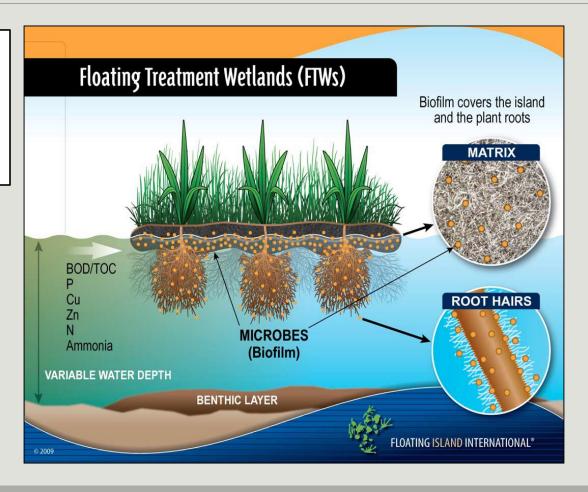
Manmade island ecosystems that mimic natural wetlands to create a "Concentrated Wetland Effect"

Biohaven Matrix is manufactured with 100% recycled polyethylene terephthalate (PET) sourced from plastic drinking bottles.

Matrix contains planting hole to plant wetland plants.

Manmade island ecosystems that mimic natural wetlands to create a "Concentrated Wetland Effect"

Biohaven Matrix is manufactured with 100% recycled polyethylene terephthalate (PET) sourced from plastic drinking bottles.


Anchoring/Tethering system

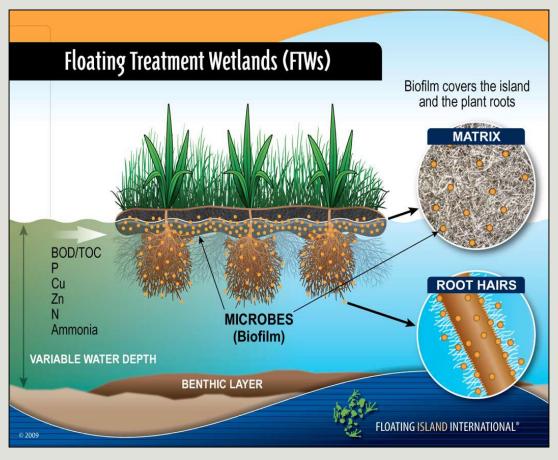
Matrix contains planting hole to plant wetland plants.

How do they work?

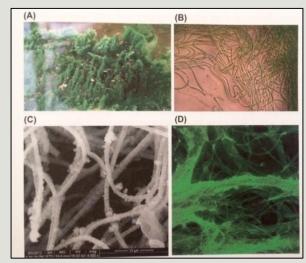
FTW matrix and plant roots provide extensive surface area ideal for underwater microbial communities (**biofilm**) that rapidly process contaminants.

How do they work?

FTW matrix and plant roots provide extensive surface area ideal for underwater microbial communities (**biofilm**) that rapidly process contaminants.



How do they work?


FTW matrix and plant roots provide extensive surface area ideal for underwater microbial communities (**biofilm**) that rapidly process contaminants.

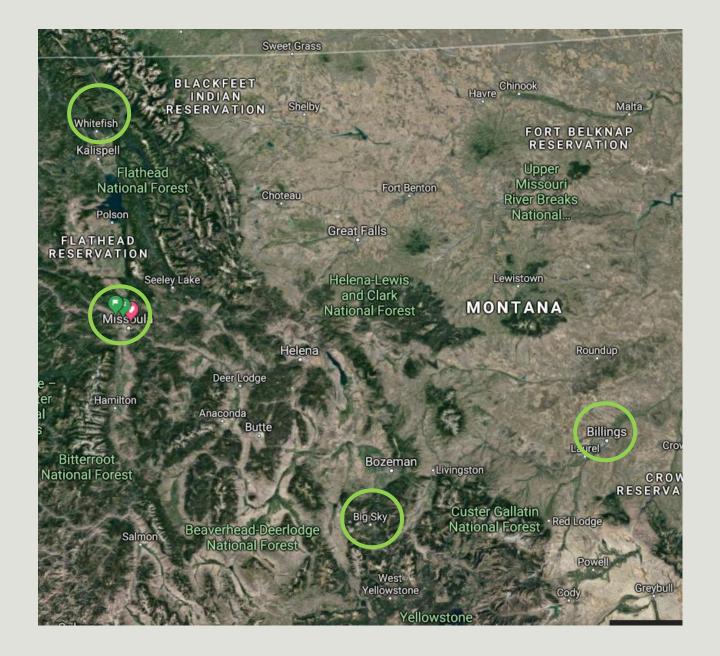
Primary mechanisms for nutrient removal:

- microbial conversion and uptake
- plant assimilation
- absorption into organic and inorganic substrate materials; and
- volatilization.

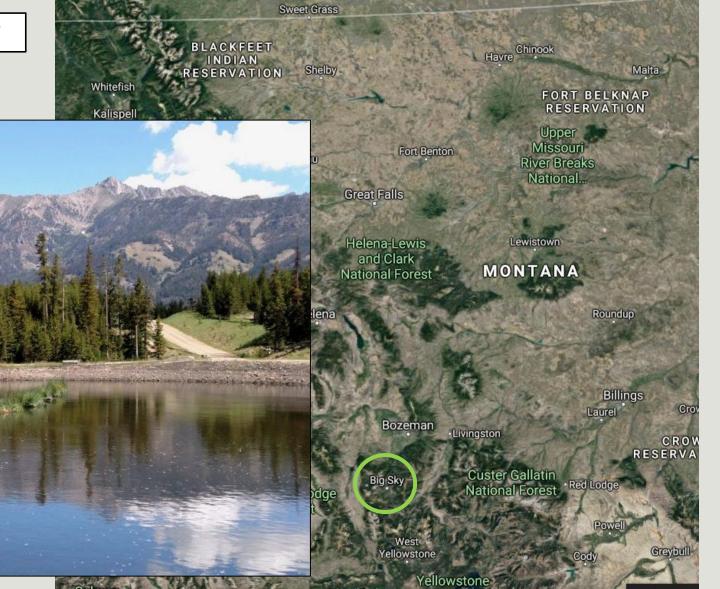
Biochemical and physical processes occur to absorb contaminants where they are then introduced into the food web.

Wu. Yonghong. <u>Periphyton: Functions and Application in Environmental Remediation.</u>(2017) Amsterdam, Netherlands.

What is the role of Floating Treatment Wetlands (FTWs)?

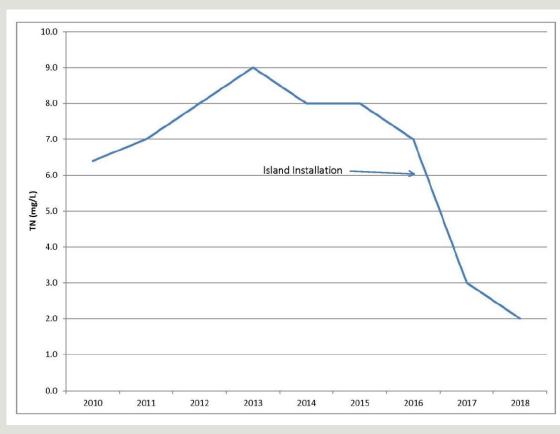

FTWs represent a relatively low cost and sustainable engineered best management practice (BMP) for reducing pollution in stormwater and wastewater.

Primary uses of FTWs are water quality enhancement for stormwater, wastewater and lakes; fishery improvement; wave mitigation; and creation of waterfowl and riparian-edge wildlife habitat.



Our projects...

Wastewater Lagoon in Big Sky, MT



Partners: Lone Mtn Land Company

Wastewater Lagoon in Big Sky, MT

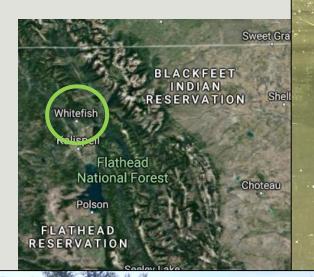
What have we learned?

Total Nitrogen levels are decreasing, likely due to increased removal of ammonia and nitrate.

Islands overwinter well!

Partners: Lone Mtn Land Company

City of Joliet, MT Wastewater Treatment Plant



City of Whitefish Stormwater Pond

Stormwater pollutants: TSS, TP, TN, Cu, Pb, Zn

Partners: City of Whitefish

City of Missoula- Pattee Creek Stormwater Pond

Lesson 3: Water Quality and Wetlands

Time: 60 minutes Location: Classroom

Goals:

Learn about chemical and physical aspects of water quality

Consider environmental variables that affect water quality

1. After playing a game and watching a powerpoint, describe the role of the nutrients phosphorus and nitrogen in aquatic systems.

- 2. With information from a game and a powerpoint, predict what will happen to algae when salt, coffee grounds, and detergent is
- 3. Using information from a powerpoint, describe several ways to measure water quality, including conductivity, turbidity, and dissolved oxygen.

In class formative assessments:

1. Students will write a correct prediction of what will happen in each demonstration jar and explain why

Summative Assessment test:

O 2, 3, and 4-nutrients

Tompkins, Lucy. 2018. Hall Passages: Sentinel Students Learn Nature Knows Best. The Missoulian. Missoula, MT. Photographer: Chelsea Culp

Materials

- Butcher paper posters

Colored paper labeled organic matter, soil, algae, stonefly larvae, cattails

- Powerpoint
- Article
- Four Jars
- Pond water
- Used coffee grounds
- Detergent
- Salt

Doyle, Sylvia, 2018, University of Montana Master's Portfolio. Missoula, MT.

High School Curriculum Surrounding Stormwater & Wetlands

Future

- Standardize monitoring and data collection.
- Increase partnerships with local schools, government agencies and private businesses.
- Creatively secure funding.
- Continue to learn about the application of this technology in various contexts.

Acknowledgements

Partners

Watershed Education Network

City of Missoula- Missoula Stormwater Utility

City of Whitefish

Sentinel High School

Montana Department of Environmental Quality

watershed

Colleagues

Watershed Consulting: Patrick Hurley, Christine Brissette, Lauren Sullivan, Marnie Criley, Mark Vander-Meer

Watershed Education Network: Deb Fassnacht, Rebecca Paquette, Sylvia Doyle

Floating Island International: Bruce Kania, Anne Kanie, Alicia Pettys, Mark Reinsel

Questions?

Hybrid poplar stand after 8 years growth.

Table 2Dataset for ammonium-nitrogen, total nitrogen and total phosphorus removal rates.

Reference	Plant sp.	Vegetation cover	Depth (m)	HLR (m/d)	HRT (d)	NH ₄ -N			Total nitrogen		Total phosphorus			
						In (mg/L)	Out (mg/L)	Removal (%)	In (mg/L)	Out (mg/L)	Removal (%)	In (mg/L)	Out (mg/L)	Removal
[22]	Canna sp. Blank	1.00 0.00	1.20 1.20	0.12 0.12	5.00 5.00	2.75 2.80	0.00 1.35	100.00 51.79	8.71 8.71	4.32 6.56	50.40 24.68	a a	a a	a a
[16]	Carex sp.	0.50	1.20	0.164	11.00	16.10	10.80	32.92	21.8	13.1	39.91	2.16	1.77	18.06
	Blank	0.00	1.20	0.164	11.00	16.10	16.50	-2.48	21.8	19.5	10.55	2.16	1.90	12.04
[50]	Ipomonea aquatica	1.00	1.10	0.063	16.00	a	a	a	20.00	4.90	75.50	a	a	a
	Blank	0.00	1.10	0.063	16.00	a	a	a	20.00	8.90	55.50	a	a	a
	Ipomonea aquatica	1.00	1.10	0.125	8.00	a	a	a	31.96	19.52	38.92	a	a	a
	Blank	0.00	1.10	0.125	8.00	a	a	a	31.96	11.62	63.64	a	a	a
	Ipomonea aquatica	1.00	1.10	0.250	4.00	a	a	a	29.40	27.00	8.16	a	a	a
	Blank	0.00	1.10	0.250	4.00	a	a	a	29.40	22.80	22.45	a	a	a
	Ipomonea aquatica	1.00	1.10	0.375	2.70	a	a	a	29.40	26.70	9.18	a	a	a
	Blank	0.00	1.10	0.375	2.70	2	a	a	29.40	25.90	11.90	a	a	a
	Ipomonea aquatica	1.00	1.10	0.500	2.00	a	a	a	31.96	26.60	16.78	2	2	2
	Blank	0.00	1.10	0.500	2.00	a	a	a	31.96	25.90	18.96	a	2	2
	Ipomonea aquatica	1.00	1.10	0.625	1.60	a	a a	a	20.00	19.20	4.00	a	a	2
	Blank	0.00	1.10	0.625	1.60	4	4		20.00	19.20	4.00	-	4	-
[25]	Vetiveria zizanoides (L.)	0.55	0.50	0.104	7.00	30.14	15.00	50.23	38.40	19.40	49.48	5.20	4.10	21.15
	Vetiveria zizanoides (L.)	0.55	0.50	0.104	7.00	32.70	14.70	55.05	46.92	19.90	57.59	6.26	4.30	31.31
	Vetiveria zizanoides (L.)	0.55	0.50	0.145	5.00	30.14	18.50	38.62	38.40	23.50	38.80	5.20	4.50	13.46
	Vetiveria zizanoides (L.)	0.55	0.50	0.145	5.00	32.69	19.40	40.66	46.92	23.00	50.98	6.26	5.20	16.93
	Vetiveria zizanoides (L.)	0.55	0.50	0.242	3.00	30.14	23.60	21.70	38.40	30.00	21.88	5.20	4.40	15.38
	Vetiveria zizanoides (L.)	0.55	0.50	0.242	3.00	32.69	25.70	21.38	46.92	28.10	40.11	6.26	4.80	23.32
[39]	Canna sp.	1.00	0.20	0.06	1.00	110.70	72.10	34.87	a	a	a	a	a	a
,	Cyperus sp.	1.00	0.20	0.06	1.00	110.70	83.50	24.57	a	a	a	a	a	a
	Canna sp.	1.00	0.20	0.03	2.00	110.70	64.50	41.73	a	a	2	a	a	a
	Cyperus sp.	1.00	0.20	0.03	2.00	110.70	74.30	32.88	a	a	2	a	a	a
[47]	Fragmites sp.	1.00	0.30	0.005	5.00	62.10	1.31	97.89	a	a	a	3.50	0.88	74.86
[4/]	Blank	0.00	0.30	0.005	5.00	62.10	3.00	95.17	a	a	a	3.50	2.07	40.86
[40]		1.00	0.43	0.242	5.00	28.90	7.10	75.43	58.50	16.10	72.48	2	a	2
[49]	Cyperus sp. Miscanthidium violaceum	1.00	0.43	0.242	5.00	28.90	11.10	61.59	58.50	17.90	69.40	a	a	a
	Blank	0.00	0.43	0.242	5.00	28.90	20.80	28.03	58.50	43.50	25.64	a	a	a
[48]	Cyperus sp.	1.00	0.35	0.115	2.70	19.10	7.60	60.21	31.00	10.30	66.77	23.80	9.10	61.76
	Miscanthidium violaceum	1.00	0.35	0.115	2.70	19.10	10.10	47.12	31.00	13.40	56.77	23.80	14.10	40.76
	Blank	0.00	0.35	0.115	2.70	19.10	10.70	43.98	31.00	14.90	51.94	23.80	13.30	44.12
[30]	Oenanthe javanica	0.56	0.48	0.014	15.00	8.37	0.46	94.56	18.32	1.59	91.32	0.80	0.34	58.00
[28]	Oenanthe javanica	1.00	0.38	0.0035	35.00	9.33	0.31	96.68	12.58	1.16	90.78	0.68	0.16	76.47
	Blank	0.00	0.38	0.0035	35.00	9.33	2.79	70.10	12.58	4.35	65.42	0.68	0.45	33.82
[13]	Ipomonea aquatica	0.14	1.80	0.16	7.00	2.16	1.13	47.69	5.15	1.96	61.94	0.97	0.36	62.90
	Ipomonea aquatica	0.14	1.80	0.22	5.00	2.16	1.30	39.82	5.15	2.29	55.53	0.97	0.43	55.67
	Ipomonea aquatica	0.14	1.80	0.37	3.00	2.16	1.50	30.56	5.15	2.80	45.63	0.97	0.51	47.42
[37]	Oenanthe javanica	1.00	0.75	0.200	3.00	a	a	a	3.76	2.59	31.12	1.25	1.17	6.40
	Oenanthe javanica	1.00	0.75	0.300	2.00	a	a	a	4.57	2.95	35.45	1.35	1.16	14.07
	Oenanthe javanica	1.00	0.75	0.600	1.00	a	a	a	7.94	2.86	63.98	1.54	1.34	13.00
[10]	-					72.05	27.15	63.84						
[10]	Cyperus sp.	1.00	0.32	0.030	7.00	73.05	27.15	62.84	90.20	38.90	56.87 36.45	34.85	16.00	54.09
	Colocasia Esculenta	1.00	0.32	0.030	7.00	70.01	37.55	46.37	89.30	56.75		34.1	20.00	41.35
	Blank	0.00	0.32	0.030	7.00	69.30	60.90	12.12	88.85	83.60	5.91	31.5	31.05	1.43
[15]	Canna sp & Juncus sp.	0.95	0.51	0.190	3.00	a	a	a	0.85	0.14	83.53	0.08	0.02	75.00
	Canna sp & Juncus sp.	0.95	0.51	0.190	3.00	a	a	a	1.88	0.79	58.00	0.22	0.12	45.45
[19]	Lolium multiflorum	1.00	0.40	0.009	35.00	a	a	a	17.00	3.16	81.41	1.84	0.19	89.51
	Blank	0.00	0.40	0.009	35.00	a	a	a	17.40	5.36	69.20	2.16	0.62	71.30

il Mo data

Table 1
Summary of CFWs studies for treatment of various water/wastewater types, presenting author, scale of experiment, type of water/wastewater, plant species, average nutrient removal efficiency, and location.

Study	Scale	Water/WW type	Plant species used	Average removal rates (%)	Location
[9]	Batch	Synthetic wastewater	Lolium perenne L. Daytona	COD: 85; TN: 45.3-57.9; NH ₄ : 86.5-92.7	China
[10]			Cyperus papyrus Colocasia esculenta	TN: 90.4; NH ₄ : 89.3; TP: 84.5 TN: 67.8; NH ₄ : 68.8; TP: 63.8	Uganda
11]	In situ application	River water	Equisetum sp., Ipomoea aquatic Forsk	COD: 79.3; NH ₄ : 83.6; TP: 87.5	China
12]			Chrysopogon zizanioides, Typha latifolia, Sparganium erectum		
12]	In situ application	Aquaculture effluent and river water	Chrysopogon zizumoides, Typna tacijona, sparganiam erectam	COD: 66; BOD ₅ : 52; TP: 65	Italy
13]	Mesocosm	Lake water	Ipomonea aquatica	TN: 66.4-76.5; NH ₄ : 58.7-68.9; TP: 45.7-61.7	China
14]	Microcosm	River water	Festuca arundinacea	TN: 90.1; NH ₄ : 86.3; TP: 72.1	China
15] Mesocosm	Lake water enriched	Canna flaccid, Juncus effuses	TN: 58-83.5; TP: 45.5-75	South	
		with nutrient solution			Carolina, USA
16]	Mesocosm	Raw domestic	Carex>95%	COD: 52.9; TN: 42.3; NH ₄ : 34.9;	Belgium
		wastewater		TP: 22.1	
17] Mesocosm	Refinery wastewater	Lolium perenne Caddieshack	COD: 62.2; TN: 62.2; TP: 63.1	China	
			Lolium perenne Topone	COD: 66; TN: 69.5; TP: 72.3	
			Lolium perenne L.	COD: 62.6; TN: 64.1; TP: 68.5	
			Geophila herbacea O Kumtze	COD: 52.2; TN: 59.1; TP: 55.7	
18]	Mesocosm	Nutrient solution	Iris pseudacorus	TN: 98; TP: 92	Netherlands
		Typha angustifolia	TN: 57; TP: 23		
19]	Mesocosm	Swine wastewater	Lolium multiflorum Lam 'Dryan'	COD: 83.4; TN: 84; TP: 90.4	China
			Lolium multiflorum Lam "Waseyutaka"	COD: 80.7; TN: 80.3; TP: 89.9	
			Lolium multiflorum Lam 'Tachimasari'	COD: 85.4; TN: 79.6; TP: 88.3	
20]	Mesocosm	Anaerobically	Eichhornia crassipes	TN: 84.5-91.7; NH ₄ ; 99.6;	Florida, USA
		digested flushed dairy manure wastewater		TP: 82-98.5	
21]	Mesocosm	Domestic	Typha angustifolia	BOD ₅ : 48.5-76.1; NH ₄ : 50-86.4	Shri Lanka
		wastewater	Canna iridiflora	BOD ₃ : 63.5-85; NH ₄ : 58.4-81.6	
221	Mesocosm	River water	Canna sp.	TN: 50.4; NH: 100	China
231	Mesocosm	Meat processing	Glyceria maxima	TN: 46-49	New
23]	WESOCOSIII	wastewater	diyeena maxima	114. 40-43	Zealand
24] Mesocosm	Nutrient solution	Canna sp., Calamus sp.	TN: 76.94; NH: 93.50 (removal	China	
241	WESOCOSIII	Nutricit Solution	Cuma sp., Culumus sp.	rates for batch experiment and	Ciiiia
				-	
251	Masasasm	Domostic	Vativaria giganaidas (L.) Mach	rice straw substratum)	Thailand
[25]	Mesocosm	Domestic	Vetiveria zizanoides (L) Nash	BOD ₅ : 62.02-91.89;	Inaliand
		wastewater		TN: 21.9-57.6; NH ₄ : 21.4-55;	
0.01		P	What I am day a market for the control of	TP: 13.5-31.3	et i .
26]	Mesocosm	Fertilizer	Thailand angustifoliate cultivar	NH ₄ : 86–99	China
			Jiangxi big leafage cultivar	NH ₄ : 83–88	
991	Massassas	Laboroston	Panteng native cultivar	NH ₄ : 81–90	China
27]	Mesocosm	Lake water	Ipomonea aquatica	TN: 30.7; TP: 38.2	China
28]	Mesocosm	River water	Oenanthe javanica	TN: 90.8; NH _i : 96.7; TP: 76.5	China
[29]	Mesocosm	Eutrophic pool water	Lolium perenne var Top One	COD: 66.8; TN: 55.6; NH ₄ : 62.8; TP: 87.1	China
			Lollium perenne var. Respect	TN: 40.1	
[30]	Mesocosm	River water	Oenanthe javanica	TN: 91.3; NH: 94.6; TP: 58	China
31]	Mesocosm	Stormwater	Juncus effusus and Pontederia cordata	TN: 15.7; TP: 47.7	Florida, USA
32]	Microcosm	Eutrophic pool water	Oenanthe javanica D.C and Nasturtium officinale	BOD: 83	China
33] Microcosm	Nutrient solution	Canna generalis	COD: 58.2; BOD ₅ : 33.2; TN: 76.3;	China	
			-	NH ₄ : 83.8; TP: 81.4	
			Scirpus validus	COD: 56.2; BOD ₅ : 32; TN: 90.5;	
			Alternanthera philoxeroides	NH ₄ : 75.8; TP: 80.8 COD: 69.7; BOD ₅ : 39.7; TN: 86;	
			Thalia geniculata	NH ₄ : 82.3; TP: 85.7 COD: 54.1; BOD ₅ : 30.8; TN: 54.5;	
			Cyperus alternifolius	NH ₄ ; 84.3; TP: 78.9 COD: 40.5; BOD ₅ : 23.1; TN: 72.7;	
				NH ₄ : 89.5; TP: 82.3	
[34]	Microcosm	Synthetic river water	Typha orientalis, Phragmites australis, Scirpus validus, Iris	TN: 64; NH ₄ : 90.3; TP: 61	China